
The Programming Environment and Training (PET) Program

CAPTools Project:
Evaluation and Application

of the Computer Aided Parallelisation Tools

FINAL REPORT

David O'Neal
National Center for Supercomputing Applications

University of Illinois, Champaign, IL

Richard Luczak
University of Tennessee, Knoxville

Aeronautical Systems Center, Wright-Patterson Air Force Base, OH

Michael White
Ohio Aerospace Institute

Air Force Research Laboratory, Wright-Patterson Air Force Base, OH

Abstract

This report extends a previous study1 of the Computer Aided Parallelisation Tools package
(http://captools.gre.ac.uk/) developed by the University of Greenwich. Product effectiveness,
deployment and training requirements, and the more general issue of continued support for the
project, are all addressed in this installment.

Scalability and the level of effort required to achieve it are considered first. An informative
inventory of essential features and basic usage strategies follows directly. A review of project
accomplishments leads into a discussion of appropriate courses of action and then key
recommendations are provided in closing.

1 D. O'Neal, R. Luczak and M. White, CAPTools Project: Evaluation and Application of the Computer Aided
Parallelisation Tools, Proceedings of the 1999 DoD HPC Users Group Conference, Monterrey, CA.

2 CAPTools Project: Final Report

Overview

During the past year, we have continued to work with the University of Greenwich on a software
evaluation project involving their CAPTools product. ASC PET funding for the CAPTools work
was awarded to the University of Illinois and the University of Tennessee in May of 1999, but
negotiations with Greenwich stalled at an inopportune time and as a result, no funding was
provided to UG for contract year 4 (CY4). However, UG was able to maintain a basic level of
support through attenuation of CY3 funds. It’s likely that awards will be provided to all of these
players for CY5.

The origins of the ASC PET CAPTools Project were examined in our first paper1. This
publication may be viewed at the NCSA CSM Group website.

http://www.ncsa.uiuc.edu/EP/CSM/publications/1999/UCG99_CAPTools.pdf

Unless noted to the contrary, all references to the CAPTools product correspond to a single
integrated IRIX installation consisting of the latest CAPO executable furnished by NASA Ames
and the message passing libraries, scripting tools, and manuals from the standard University of
Greenwich package. All timing tests were performed on the Origin clusters at NCSA and ASC.

We begin this final installment with a brief review of Amdahl’s Law for Parallelization. This
section serves two purposes. It lends definition to basic terms used throughout the article while
establishing a method for evaluating the effectiveness of CAPTools-generated parallel source
codes. Notes describing the basic care and feeding of the software (Usage) lead into a discussion
of more severe limitations (Caveats). Fundamental descriptions of each evaluation code precede
more detailed observations regarding scalability (Applications). Significant findings are then
summarized and final recommendations are made in closing.

Amdahl’s Law of Parallelization

The premise of Amdahl's Law is that every algorithm has a sequential part that ultimately limits
the speedup that can be achieved by a multiprocessor implementation. In this context, speedup is
the ratio of execution times for single processor (dividend) and multiple processor (divisor) runs.
The classical form of Amdahl's Law2 is usually stated as follows:

If the serial component of an algorithm accounts for 1/S of its execution time, then the
maximum speedup that can be attained by running it on a parallel computer is S.

More detailed analyses generally begin with a characterization of a program solely in terms of its
operation count. It is assumed that some portion q of these operations can be executed in parallel
by p processors and that the remaining operations must be executed sequentially.

CAPTools Project: Evaluation and Application 3

For a given problem size, if the total operation count and per-processor performance of the code
are presumed constant for any value of p, then a simple expression for speedup may be written as
a function of p and q.

S (p,q) = (q/p + 1 – q) -1

This is Amdahl’s Law of Parallelization. It is important to note that S reflects an idealized
speedup value, also known as false speedup because parallel executions are known to involve
overheads that invalidate the aforementioned presumptions. Nevertheless, this function does
serve as an upper bound for more realistic speedup models that incorporate operation counts and
performance levels that are dependent on the processor count3.

Error! Not a valid link.
Figure 1. Amdahl’s Law of Parallelization

Estimated speedups derived from timing measurements for each of our evaluation codes are used
to estimate the portion of the total operation count parallelized by CAPTools. Reference is made
to the curves of Fig. 1. Note that in order to make the interesting part of the speedup curves
easier to interpret, values for q < 90% have been cropped from the chart. Speedups associated
with the missing portions of these curves are considered to be unacceptably poor and in some
cases are only reported as such without accompanying data. Reference is also made to the
efficiency of a parallel code. This value is taken to be the ratio of speedup (dividend) to the
processor count (divisor), or e = S/p. A novel interpretation of Amdahl’s Law of Parallelization
developed by O’Neal and Urbanic showed that these concepts can also be used to estimate the
performance of cache-based microprocessors on the basis of memory component bandwidths.4

4 CAPTools Project: Final Report

Usage Notes

This section describes limitations and general usage characteristics associated with the current
2.1 Beta version of the CAPTools product. Both new and experienced users should find it
informative. Note that at the time of this writing, the release of version 2.2 Beta was imminent.

CAPTools supports standard Fortran 77 syntax (an F90 parser is in development). Fortran
statements that deviate from F77 standard may need to be rewritten. An unusual I/O format and a
number of instances of array syntax were encountered and (justifiably) rejected by CAPTools
during testing.

Source files containing conditional compilation directives must be preprocessed prior to loading.
The CAPTools parser treats compiler directives as comments and therefore all program
statements are loaded. Unless an error occurs as a side effect of unwanted inclusions, no warning
is provided to the user.

A new feature called the Undefined Symbol Browser has recently been added. In the past, all
external references had to be resolved before a source code could be loaded successfully. For
example, stubs corresponding to library calls had to be provided by the user, and then these same
stub routines would have to be commented back out of the CAPTools-generated source code
prior to compilation.

The new window supports examination and control of undefined symbols and their effect on
subsequent dependency analyses. Help is currently not available for this feature. If the default
assumptions are accepted, the Analyser window is automatically raised. This is also the case
when a source without undefined symbols has been successfully loaded. A better choice might
be to raise the READ Knowledge editor as its use is indicated first.

User and READ statement knowledge should be added prior to initiating a dependency analysis.
Integer logic associated with variables appearing in READ statements can be simplified merely
by indicating the sign of these inputs. More complex logic can also be developed. Of course it
may not be possible to make such determinations for all variables, but in general, user
knowledge should be specified whenever possible.

After successfully loading a source code, the Analyser button becomes active. Two distinct
algorithms for determining dependencies are supported (Banerjee, Omega). Any combination of
three dependency test options (Scalar, Exact, Disproofs) may be performed within any
combination of three contexts (Interprocedural, Knowledge, Logic). A group of preset selections
is also provided (Basic, Intermediate, Full). Ultimately a full analysis should be performed, but
when working with large sources, a progressive approach is recommended. Performance of the
Analyser may be improved by (1) saving the database, (2) exiting and re-entering the system,
and (3) reloading the database file after completing each stage.

CAPTools Project: Evaluation and Application 5

The dependency analysis kernel presumes static allocation of all variables (as if SAVE
statements were implemented everywhere). The use of this programming technique is often
found in older programs. Static allocation implies that the addresses of local variables are fixed,
thus when a subroutine (function) is exited, its local variables persist. Therefore, all calls that
might be executed more than once will spawn dependencies. If static allocation is not presumed,
such dependencies should be identified and removed.

Configurable windows are provided for filtering and editing dependencies. The pruning of false
dependencies might be regarded as an option, but the scalability of the final code can be greatly
affected by the presence of such dependencies. The function of the Directives Browser
(OpenMP) and the Dependency Graph Viewer (message passing) should be well understood
before electing to forego their use. Unfortunately, as of this writing the only guidance provided
for any of the features developed by NASA Ames appears only in the form of a README file.

OpenMP source may be generated immediately after completing any dependency analysis, but
the use of the Directives Browser is highly recommended. After loading a source code and
completing an analysis, users should proceed directly to the Directives Browser. Dependencies
inhibiting loop parallelization should be viewed and edited there if possible. Partitioning is not
required.

Message passing codes must be partitioned and communication logic must also be developed
within the environment before a new source code can be generated. The compilation and
execution of CAPTools-generated message passing codes is somewhat more demanding of the
user, but the difference is approximately the same as that between compiling and running any
given OpenMP source and its MPI equivalent.

CAPTools generated message passing code contains calls to various library routines developed
by UG. At the core of this design lies CAPLib, a library of communication routines built upon
various message passing primitives (MPI, PVM, shmem). This wrapper-like layer was
implemented before MPI5 had emerged as a de facto standard interface. A nice paper describing
CAPLib was recently made available at the CAPTools website.6

Caveats

Consideration of the following commandment for CAPTools users is of utmost importance:

Thou shalt not save a database after generating source code

In the current version of CAPTools, the contents of the database are corrupted during the logic
dump associated with code generation. Although it is possible to continue to working within a
session after generating source code, it is not recommended. Oddly enough, this rather severe
shortcoming has remained undocumented for at least six months.

6 CAPTools Project: Final Report

Another insidious bug originates from the so-called Openwin libraries that are an integral part of
the CAPTools environment. After successfully starting and then exiting a CAPTools session,
subsequent attempts to start new sessions unexpectedly terminate during initialization. The most
reliable workaround for the problem is to touch the libxview.a and libolgx.a library files, but of
course only the owner of the files can apply it.

Because of the aforementioned database corruption problem, users are forced to exit and re-enter
CAPTools after generating source code. Then the Openwin problem will often prevent
immediate re-entry. Not an ideal situation where new users are involved. UG has been working
on a new build of the windowing libraries and a File menu feature that supports multiple
database loads. We expect these items will soon be resolved.

Applications

Basic characteristics of the simulation codes selected for evaluation are followed by detailed
descriptions of the individual porting efforts and scalability measurements taken with the final
versions of the new parallel application codes are featured herein.

We begin this section with a table of information summarizing each of our evaluation codes in
terms of its geometry, subroutine and function count, number of statements before and after
application of CAPTools, the cases (partition sizes) for which results have been validated.

Application
Model

Geometry
Subroutines

and Functions
F77 Lines

In
OMP

Lines Out
MPI

Lines Out
OMP

Validation
MPI

Validation
R-Jet 3D 63 7655 7471 19284 1,2,4,8,16,32 1,2,4

FDL3DI 3D 76 9964 15330 11993 1-8,16,32,64 1-8,16
N-Body 3D 2 195 207 376 1-6 1-6
PFEM 2D 16 2073 1934 2357 1-8,16,32,64 1-8,16,32,64

Table 1. Summary of general information regarding CAPTools test applications

The first two applications (R-Jet and FDL3DI) were provided by AFRL. The others (N-Body and
PFEM) are research codes out of Rice University and Carnegie Mellon University respectively.

In the following sections, brief descriptions of the functionality of each application are followed
by a set of detailed notes regarding the porting effort. Speedup curves are provided for each
experiment.

CAPTools Project: Evaluation and Application 7

R-Jet
Air Force Research Laboratory

R-Jet is a hybrid, high-order, compact finite difference spectral method for simulating vortex
dynamics and breakdown in turbulent jets. While the code is explicit in time, the compact finite
difference scheme requires inversion of tridiagonal matrices, giving rise to the same sort of
parallelization problems exhibited by implicit methods.

The R-Jet program was only recently implemented as a serial code and so a parallel version had
not yet been started when CAPTools became available. It was, however, designed to support the
solution of radial and axial derivatives by either an explicit differencing scheme or the compact
method described above, which ultimately proved to have a profound effect on scalability.

R-Jet employs a programming technique in which complex valued arrays are mapped onto pairs
of real arrays for subsequent input to FFT routines. This approach was problematic for earlier
versions of CAPTools. Dummy routines were needed to maintain the geometry of the data
structures. Although CAPTools was later amended to eliminate the underlying restrictions, we
continued to maintain the new code because its use resulted in a significant reduction of the time
required to complete a dependency analysis.

CAPTools was overly cautious in its assessment of the utilization of a number of work arrays.
The pruning of a number of false dependencies was performed with the Dependency Graph
browser (see Usage Notes section). One unexpected result was the placement of message passing
statements outside of existing IF-THEN constructs whose use was required for proper masking
of data exchanges. For some of our test problems, this resulted in the generation of spurious
messages. It was fixed by applying the aforementioned IF-THEN statements to the message
passing calls.

The most significant deficiency we observed with respect to the R-Jet code was the way in which
the collection of summary information needed to generate the final solution and restart files was
implemented. The code generated by CAPTools represented a sort of bucket brigade
arrangement in which variables were handed down one at a time from processor to processor
until they reached PE0 and were written out to disk. For larger partition sizes, problems with
default values for MPI environment settings were observed.

We chose to replace this code with a simpler and more efficient implementation in which each
processor was programmed to open a uniquely named temporary file into which local data was
subsequently streamed using unformatted block writes. The master processor (PE0) was then
used to gather and construct the global solution and restart files by post-processing the array of
temporary files. The new method outperformed the CAPTools-generated code for all cases
involving more than a few processors where it still remained competitive.

Error! Not a valid link.

8 CAPTools Project: Final Report

Figure 2. R-Jet Speedup Data (101x131x17)

The MPI curves presented in Fig. 2 illustrate scalability of the resultant message passing code
through 64 processors for a 101x131x17 test case partitioned in the first two dimensions.
Speedups for the compact differencing scheme level off at around 25 processors due to the serial
dependence implied by the tridiagonals, but the efficiency of the explicit differencing algorithm
exceeds 50% through full range of partition sizes tested (p = n2 for n ranging from 1 to 8). The
estimated fraction of the total operation count parallelized by CAPTools exceeded 97% for the
latter case.

Reference is also made to a set of OpenMP experiments performed last fall with an earlier
version of CAPTools 2.1 Beta and the compact differencing source. Results were presented by
Greenwich at Supercomputing 1999. The data for the OpenMP (OMP) curve was taken from a
chart that appeared on the reverse side of the handout distributed by Greenwich at SC’99:

http://www.gre.ac.uk/~lp01/sc99/openmp/page2.html

The OMP curve indicates that between 92% and 95% of the total operation count was
parallelized by CAPTools.

CAPTools Project: Evaluation and Application 9

FDL3DI
Air Force Research Laboratory

The Flight Dynamics Laboratory 3D Implicit code is used to study aeroelastic effects. It was
developed by the AFRL Basic CFD Research Group and Wright State University. FDL3DI is a
high-frequency Navier-Stokes model featuring a one-dimensional structural solver component.
Collective use of the numerous variations of FDL3DI maintained by AFRL research staff is
heavy. Interest in developing a recipe for converting all of these sources to parallel form is what
led to the inclusion of the FDL3DI code in this study.

A parallel implementation based on the use of a Chimera overset grid decomposition scheme was
modified by Wright State University to run in a serial fashion. The original design produced by
K. Tomko (WSU) was quite clever, making full use of the knowledge that FDL3DI was already
configured to handle overset grids. By characterizing arbitrary mesh decompositions as overset
grid problems, the task was reduced to a geometry problem. A new tool capable of imposing
such decompositions had to be developed from scratch, but very few changes to the original code
were required. This is an excellent example of the difference between the ways that humans and
machines work.

Error! Not a valid link.
Figure 3. FDL3DI Speedup Data (100x100x100)

The serialized WSU code was used as input to CAPTools. Both OpenMP and message passing
sources were produced. The Directives Browser showed that all but a few loops were
automatically parallelized without any additional work, but as indicated by the speedup curves of
Fig. 3, the resulting code was only able to keep a few processors busy. However, the effort
required to achieve this improvement was insignificant.

Work on a new message passing version of FDL3DI was less satisfactory. After completing a
full analysis, an array index was selected for partitioning. CAPTools uses this information to
create a sort of template for application to other, similarly dimensioned program arrays including
those of lower rank. Upon completion of this phase, maskings for all of the newly partitioned
arrays were computed and the corresponding communications statements were generated.
Attempts to apply the overlapping communications and memory reduction features resulted in
segmentation faults.

Tests of the message passing executables created from 1- and 2-dimensional partitionings of the
data were unsuccessful. Iteration timings that consumed about a minute of CPU while running on
a single processor required over 2 minutes when 2 processors were used, and over 4 minutes
when 4 processors were used. The need to increase one of the default per-processor limits, i.e.
MPI_MSGS_PER_PROC, gave indication that a large number of small messages were being
dumped onto the network. Unnecessary data replication meant that the physical memories of
each participating processor were also being oversubscribed. All available network topologies

10 CAPTools Project: Final Report

were tested. Sources generated from default and pruned dependency graphs were checked. The
pipe configuration coupled with the source produced from the pruned graph resulted in the best
timings (noted above). The trend was clear and so testing was suspended at this point.

Reference is also made to another set of experiments with a newer, modified version of the
FDL3DI code conducted by members of the Ohio Supercomputer Center research staff. Results
were presented by the University of Greenwich at Supercomputing 1999 in the form of two
handouts. Charts appeared on the reverse side of these documents.

http://www.gre.ac.uk/~lp01/sc99/openmp/page2.html
http://www.gre.ac.uk/~lp01/sc99/mp/page2.html

The OSC tests were carried out with a more recent version of the FDL3DI source featuring
additional memory allocations in the form of specialized workspace arrays. There is also some
indication that they were solving a different (larger) problem. However, the dependency graph
pruning techniques applied in both cases were essentially the same, which means that the tuning
effort given to each of these codes was also approximately the same. Note, however, that the
results of the OSC tests were much more positive than ours.

Timing data presented for the OSC OpenMP tests suggests that about 90% of the total operation
count was parallelized by CAPTools. Speedup data for the message passing runs indicates that
96% to 98% of the total operation count was parallelized by CAPTools. The significance of this
observation is it implies that subtle differences in source files can have a dramatic effect on the
efficiency of the source code generated by CAPTools.

N-Body
Rice University

N-Body is a three-dimensional n-body model with constraints. It is used to solve problems
arising in electromagnetic applications. It determines equilibrium positions for an arbitrary set of
points interacting on the surface of a unit sphere according to a 1/d 2 force law (here d denotes
the distance between two points). The result is a particular uniform distribution of points in three
dimensions.

The serial version of the N-Body code was used as input to CAPTools. A hand-written MPI code
was also developed for comparison purposes. The dependency analysis and the generation of the
OpenMP code were accomplished in a fully automatic way. Partitioning phases associated with
the message passing model required a minimum of user input. Both CAPTools-generated codes
produced correct output.

Identical initial distributions and convergence criteria were used for all experiments.
Measurements were taken for problems consisting of 100 and 1,000 points running on various

CAPTools Project: Evaluation and Application 11

partition sizes. Approximately 105 and 106 iterations respectively were required to achieve
equilibrium. Because N-Body doesn’t involve a computational mesh, a full topology was
necessarily specified. Positional updates for each particle depend only on the governing ordinary
differential equation.

Error! Not a valid link.
Figure 4. N-Body Speedup Chart

Scalability measurements for the OpenMP and handwritten MPI versions of the code are
presented in Fig. 4. Results associated with the OpenMP model were excellent. Good scalability
was observed through 16 processors for the smaller problem and through 64 processors for the
larger one. The estimated portion of the total operation counts parallelized by CAPTools ranged
from 90% to 99%.

A few runs of the CAPTools-generated message passing code were also performed for various
partition sizes. Although correct results were produced, we were unable to achieve an acceptable
level of scalability for either problem size.

The N-Body tests revealed a specific limitation of the current CAPTools message passing model.
Simple communication patterns may be implemented in overly general fashions. In one case, we
found that data arrays were being transmitted a single element at a time inside of a loop. In
another, a reduction operation wasn’t recognized as such. It had also been rewritten in terms of
CAPLib primitives, e.g. CAP_SEND and CAP_RECEIVE, where a collective call was indicated.

These items imply that hand-tuning of message passing source codes may be required in order to
realize acceptable levels of performance. Where the communication of data arrays is involved, at
least some of these changes may be completely straightforward and very effective, but collective
operations are generally more complicated. Knowledge of message passing concepts is
prerequisite.

We should also mention that the memory reduction feature associated with the message passing
model was successfully applied. Note that if memory reduction is not applied, all data arrays will
be replicated across all processor memories. While data replication might be acceptable early in
a design cycle, it doesn’t represent a valid approach for a final product.

PFEM
Carnegie Mellon University

The Parallel Finite Element Method code is a research-level finite element code suitable for
solving highly nonlinear boundary value problems in two dimensions. The use of nonconforming
finite element geometries facilitates a simple domain decomposition strategy based on two-
colorings. Each subdomain consists of approximately half of the total number of elements. All
element calculations within each subdomain are effectively uncoupled7.

12 CAPTools Project: Final Report

The PFEM model was selected for evaluation for a number of reasons. A hand-coded directive-
driven source code based on the Cray Research microtasking model (CRI) was available for
comparison purposes. PFEM also featured a complete set of validation problems and timer
outputs that saved us a bit of time and effort. We were also interested in testing CAPTools’
ability to deal with dynamic allocation of arrays, a feature that figured prominently in PFEM’s
design.

The CRI parallel source was used as input to CAPTools. Existing directives were converted to
CAP comments by the parser. Unresolved references to a couple of system functions (SECOND
and GETENV) were encountered and processed by the new Undefined Symbol Browser. User
knowledge reflecting a positive element count and tolerance value was added, and then a full
analysis was performed.

A few circular (self-dependent) references associated with the static treatment of local variables
were pruned from the dependency graph (see Usage Notes section), the database was saved (see
Caveats section), and then just prior to exiting the program, a new OpenMP source code was
generated. Following a simple makefile change (the addition of a compiler switch) we were able
to build and run a new OpenMP program. Work on the message passing model, however, proved
to be much more complicated by comparison.

Upon restarting CAPTools, the database that had been saved prior to generating the OpenMP
source was loaded, giving us a bit of a head start on the message passing version. Partitioning
was specified with respect to the first index of a single array, the geometry of which was
representative of all of the primary data arrays. An unstructured mesh was then selected and
partitioning was initiated. Within the context of CAPTools, an unstructured mesh corresponds to
a fully connected messaging topology. In general, heavy use of indirect addressing is indicative
of the presence of an unstructured mesh.

After confirming array bounds for a short list of references, all of the primary data arrays were
automatically partitioned. A few indexing arrays were necessarily deleted from the list of
partitioned arrays. Indeed, when this step was omitted, the resultant executable produced
incorrect output. Masking and communication calculations were completed using the default
system settings and the final database was saved and a new message passing source code was
created just prior to exiting CAPTools.

Our attentions then turned to the set of cap utility scripts, e.g. capmake and capf90, that were
developed to support proper compilation and linking of CAPTools-generated message passing
codes. We quickly discovered that documentation describing the construction of executables was
quite thin, and so we chose to design a makefile around the capf90 script. A minor problem was
observed while attempting to pass options to the underlying compiler, but a suitable workaround
was found and we were able to complete the build. The result was a single executable that could
be configured at run time to accommodate any problem or partition size.

CAPTools Project: Evaluation and Application 13

Follow-up experiments with the available message passing optimization buttons were also
carried out. Enabling the use of asynchronous calls (overlapping communications) produced no
changes in the output source code. Attempts to apply the memory reduction feature resulted in
segmentation faults, but we later discovered that this feature is not supported for unstructured
mesh parallelization in the current release and therefore the button should be inactive. See the
Release Notes page for CAPTools version 2.0 Beta dated October 23, 1998, for further detail.

Error! Not a valid link.
Figure 5. PFEM Speedup Chart

Initial timings were surprising. The message passing version was quite a bit more efficient than
the corresponding OpenMP code, particularly for larger partition sizes. Estimated fractions of the
total operation count parallelized by CAPTools were in the range of 95% to 97% for the message
passing model, but only around 90% for the OpenMP code. Because the PFEM source code was
originally written for execution on a multiprocessor computer, we had expected more from the
OpenMP port. This led us to take a closer look at the source with the Directives Browser.

Cursory inspection revealed that a pair of scattering loops had not been parallelized because of
the presence of indirect addressing arrays. CAPTools could not possibly have determined that
these scattering statements were actually permutations and that no true dependencies were
present, so the inhibitors were explicitly removed using the Directives Browser and a new source
was generated. The desired effect was then implemented automatically. Scalability of the new
OpenMP executable was much improved. The estimated fraction of total operations parallelized
by CAPTools was now exceptional, ranging from 95% to 98%. These results are reflected by the
OpenMP curves shown in Fig. 5.

Summary

The CAPTools product was evaluated with respect to its ability to deal with two significant DoD
codes and two academic research programs. A total of 15 cases were considered including 3
produced by the Ohio Supercomputer Center. At least some measure of speedup was observed
for all 7 of the CAPTools-generated OpenMP codes while only 5 of the 8 CAPLib experiments
met with similar results. The effort required to achieve these results varied from case to case, but
the OpenMP tests were consistently less demanding both in terms of parallel programming
requirements and time.

The memory reduction feature could not be applied to one of the test codes (PFEM) due to the
presence of an unstructured mesh. In another case (FDL3DI), attempts to apply the feature
resulted in segmentation faults. When memory reduction is not (or cannot be) applied, the entire
dataset is replicated.

The CAPLib model requires much more from the user in every way. Detailed knowledge of the

14 CAPTools Project: Final Report

input source code is presumed. Data distribution must be considered prior to any other
parallelization steps. A thorough understanding of parallel programming concepts is required in
order to guide CAPTools through the process. CAPLib source code is also much more difficult
to debug, even for the experienced programmer. The absence of a compact and detailed CAPLib
document describing the application interface contributed to the problem.

Unwanted modification of original formatting contained by input source codes renders output
from the diff utility useless. Nearly all statements are affected. As a result, nontrivial changes can
only be observed through side-by-side comparison of entire programs.

The effectiveness of the CAPLib model is highly dependent on the presence of a well-defined
mesh. Our work with the N-Body code made this perfectly clear. Conversely, CAPTools-
generated OpenMP code is not subject to the same sort of restriction. Results for the OpenMP
version of N-Body were truly exceptional.

For two of our test cases, CAPTools implemented block-oriented communications of data arrays
as loops around the arrays in which elements were being transmitted one element at a time. This
limitation is reportedly slated for improvement in a future release. Until then, users may need to
modify output source code “by hand” in order to achieve acceptable levels of performance.

We also observed that in some cases, CAPTools did not recognize situations that called for the
use of collective communication calls. Instead, less efficient code was written in terms of
CAPLib primitives. This particular problem is much more difficult to deal with, but hopefully it
will also be resolved in the near term. Otherwise, hand tuning may be required as indicated by
the last line of the preceding paragraph.

Recommendations

Users faced with the challenge of parallelizing a FORTRAN 77 code should certainly consider
application of the CAPTools package. Work may be required to successfully load or analyze any
given input file, but once accomplished, the value of the information represented in the
CAPTools Call Graph, the Dependency Graph and the Directives Browser is significant. The
effort required to achieve this minimal level of progress is considered worthwhile for any and all
porting projects.

Where the option exists, users are advised to work with the OpenMP model. Compilers
supporting OpenMP are usually associated with distributed shared memory platforms and so we
are indirectly recommending that users target DSM machines like the SGI Origin 2000 first.
Source code can be generated immediately after completing an analysis. If formatting changes
are neglected, the output file looks very much like the input file, thus reducing the impact of any
subsequent debugging or tuning efforts. The build process is also completely straightforward.
The simplicity of this approach is very attractive. For some of our test cases, the OpenMP

CAPTools Project: Evaluation and Application 15

executables were also the most effective in terms of scalability. As previously noted, the
OpenMP model is currently the only practical choice for codes that do not involve a mesh.

The OpenMP executable out of Ames (version 2.1 Beta) has been a robust and practical tool for
many months now. We recommend broad deployment of this application across all of the
HPCMP computing centers.

We are less enthusiastic about the CAPTools message passing model. It is most effective in the
hands of an experienced programmer, but this type of DoD user is not inclined to develop
message passing logic that depends on proprietary libraries. Novice programmers may find the
CAPLib application interface less complicated than MPI for example, but such users are not well
suited to the demands imposed by the model, especially when debugging or tuning is required (as
is often the case). The former situation isn’t likely to change, and the possibility of a member of
the latter group producing a significant result within a reasonable amount of time is remote.

Therefore, we recommend that funding for the development of CAPTools features that support
the OpenMP model should be continued. Deliverables associated with the current version of the
UG proposal for CY5 should be revised if necessary. In addition to the directives-based features,
other components the might be improved include the dependency analysis kernel, the windowing
libraries, the file manager, and the help file system. Specific items of interest include:

• Core support
• Updated Openwin libraries
• Enhanced database management features
• Elimination of unnecessary source formatting changes
• Improved documentation and help file system

Anything that is intrinsically bound to the message passing model should be neglected.
Additional support for the development of a web-based instructional presentation focusing on the
CAPTools OpenMP model should also be considered.

The collaboration between UG and NASA Ames has been very successful, but we would still
like to see a single product emerge. Otherwise, the future of CAPTools becomes much murkier.
Anything less than a truly integrated effort may not be sustainable within the narrow market that
is addressed by CAPTools.

Acknowledgments

We wish to express our sincere thanks to Professor Mark Cross, Drs. Constantinos Ierotheou and
Steven Johnson, and Peter Leggett of the Parallel Processing Research Group, University of
Greenwich, London, England, UK, and to Dr. Henry Jin of the NASA Ames Research Center,
Moffet Field, CA, without whose help this project would not have been possible.

16 CAPTools Project: Final Report

We would also like to thank Drs. Miguel Visbal and Raymond Gordnier (AFRL) and Professor
Karen Tomko (Wright State University) for their contributions to the project including the
provision of the FDL3DI application.

References

1. D. O'Neal, R. Luczak, and M. White, CAPTools Project: Evaluation and Application of the
Computer Aided Parallelisation Tools, proceedings of the DoD High Performance
Computing Users Group Conference, Monterrey, CA, 1999.

2. G. Amdahl, Validity of the single-processor approach to achieving large-scale
computational capabilities, proceedings of the AFIPS Conference, volume 30, page 483,
AFIPS Press, 1967.

3. W. Schönauer, Scientific Supercomputing: Architecture and Use of Shared and Distributed
Memory Parallel Computers, self-edition, Karlsruhe, Germany, 2000.

4. D. O’Neal and J. Urbanic, On Microprocessors, Memory Hierarchies, and Amdahl’s Law,
proceedings of the DoD High Performance Computing Users Group Conference, Monterrey,
CA, 1999.

5. MPI: A Message Passing Interface Standard, University of Tennessee, Knoxville, TN, May
5, 1994.

6. P. Leggett, S. Johnson, and M. Cross, CAPLib: A Thin Layer Message Passing Library to
Support Computational Mechanics Codes on Distributed Memory Systems, internal report,
Parallel Processing Research Group, Center for Numerical Modelling and Process Analysis,
University of Greenwich, London, UK, 2000.

7. D. O'Neal and R. Reddy, The Parallel Finite Element Method, in proceedings of the Cray
User Group Inc., Spring Conference, Denver, CO, 1995.

8. OpenMP Fortran Application Program Interface, Version 1.0, October, 1997.
9. Computer Aided Parallelization Tools User's Guide, Parallel Processing Research Group,

University of Greenwich, London, UK, Version 2.0 Beta, October, 1998.

